AD=AL107 463 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE=-ETC F/6 9/2
; THE CONNECTION MACHINE (COMPUTER ARCHITECTURE FOR THE NEW WAVE)==ETC(U)
! StP 81 W D HILLIS NOOOI“-BO-C-USO&

UNCLASSIFIED Al-M-bl4b

END

|
=2-81

oTic




N“ 0 %z 2
= 132
S g

ng

22

[
it e

N
O

4
MICROCOPY RESOLUTION TEST CHART
[TV




QUCHEITY S AT ™ ATION O

UNCLASS IFIED L v\
SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entersd)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO| 3. RECIFIENT'S CATALOG NUMBER )
~ P #646 _ - ,
4. TITLE fand Subritle) 5. TYPE OF REPORT & PERIOD COVERED
w
A 4\ e . L
Gl &y The Connection Machine | Memorandum
s»n  ~4  (Computer Architecture for the New Wave), / :
u}:_,) ] ) ’ - 6. PERFORMING ORG. REPORT NUMBER
b4 \’l 3. AUTHOR(s) e—— / CONTRACT OR GRANT NUMBER(#)- ~—— { **~
P W, Daniel/Hillis N00O14-80-C-8505
3 A
H by :
S. PERF.OR.MDNG QRGANIZATION NAME AND ADORESS . 10. 'ngg’:AsOERLKEvS:‘TT}JPURMOBJEEg;. TASK
sy Artificial Intelligence Laboratory ~ AR RKUN _
¢ 545 Technology Square . P
: Cambridge, Massachusetts 02139 ' ' SR
' ) 11, CONTROLLING OFFICE NAME AND ADDRESS - _ 12. REPORY DATE -
: < Advanced Research Projects Agency _ i1 I September 1981
: 14300 Wilson Blvd : . . 13. NUMBER OF PAGES
Arlington, Virginia 22209 o 29 ‘
’;' id. MONITORING AGENCY NAME & ADDRESS(I dillerent from Controlling Ollice) 15. SECURITY CLASS. fof this report,
Lo Office of Nava)l Research - ' UNCLASSIFIED ' j
bog Information Systems : o o : 3
i 5 Arlington, \!irginia 22217 : ' 132, ISDCEEE.DAS?EFICATION/DONNGRADING ' ’
| }E 6. OISTRIBUTION STATEMENT (of this Repor) . A ‘ ‘C '
E . B : T g 3 |
; f Distribution of this document is unlimited. . ey e l
< ' y : . ’ - w4
: : o, : P
.: X H ,t;. { _ L "’\98\
- v 7«' ) ék ) ‘\“G\j \ o] . » ‘:
.-; i 17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, dlll-nn!honk'tpcd) A . . “
S IS ' -
: .
[
;’; 18. SUPPLEMENTARY NCTES .
B ) . |
¥ None :
; -ﬁ 19. XEY wWORTS (Continue on reverss side Il necesswry and ldsntily by block number)
5 -
! ' .
L o | Concurrent Architecture
: Multiprocessing -
g ¥ Associative Memory :
P ::..."l Parallel Computer
' ¢ | ¥ 5% ZVBSYPACT (Continue on reveres elde Il necessary and identity by block number) N BE
[] 4 . . .
. ; This paper describes the connection memory, a machine for concurrently )
: manipulating knowledge stored in semantic networks. We need the connection
s memory because conventional serial computers.cannot move through such -~ -
networks fast ‘enough. The connection memory sidesteps the problem by provid-
( ing processing power proportional to the size of the network. Each node &
m . 1link in the network has its own simple processor. These connect to form a
’ uniform locally-connected network of perhaps a million processor/memory cells. 4~
PN
DD , %", 1473  coimion oF 1 Nov es 18 OBsOLETE [ UNCLASSIFIED // ’/ ’
¥ ’ 2/M 0302-014-6601 | ‘ . , -




BB L Al el e e s O TPt 00 = Y

MASSACHUSETTS INSTITUTE OF TECHNOLOGCY
ARTIFICIAL .NTELLIGENCE LABORATORY

A.l. Memo No. 646 September, 1981
The Connection Machine ;\ccesr:inn Tor
NTIS r Uyt w-“"@74
(Computer Architecture for the New Wave) Drie ey i
e T -1
:' froL. L «T___
by W. Daniel Hillis fome e
i Diaver .. R

ABSTRACT: This paper describes the connection memory, a machine for concurrently
manipulating knowledge stored in semantic networks. We need the connection memory
because conventional serial computers cannot move through such networks fast enough.
The connection memory sidesteps tiie problem by providing processing power proportional
to the size of the network. Each node and link in the network has its own simple processor.
These connect to iorm a uniform Jocally-connected network of perhaps a million

processor/memory cells.
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THE CONNECTION MACHINE

1 This paper describes the connection memory, a machine for concurrently manipulating
knowledge stored in semantic networks. We need the connection machine because
conventional serial computers cannot move through such networks fast enough. The
connection memory sidesteps the problem by providing processing power proportional to
the size of the network. Each node and link in the network has its own simple processor.
These connect to form a uniform locally-connected network of perhaps a million
processor/memory cells,

The connection memory is not meant to be a general-purpose parallel computer. It is fast at
a few simple operations that are important for artificial intelligence, such as property
lookup in a semantic inheritance network. I will discuss the need for such a machine, what
it will do, and how it will work. I describe progress already made toward its design and a
plan to actually build a hundred-thousand-cell prototype.
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Our Machines are Too Slow

On a serial machine, the time required to retrieve information from a network often ;
increases with siz¢ of the network. Thus paradoxically, programs become slow as they B
become smart. Today, we write artificial intelligence programs that use a few hundred facts. : j
We would like to increase this to a few million, but the programs already take minutes to }
make decisions that must be made in seconds. Scaled up, they would take years. Von |
Neumann machines, even if they are built of exotic ultrafast components, are unlikely
] candidates for solving these problems, since they are limited by the speed of light. A
‘ supercomputer inside a six-inch cube would take one nanosccond to send a single signal ‘
from one corner to the other. A nanosecond cycle time is less than a factor of a hundred i
B better than currently available machines, not nearly enough to solve our million-scaled
| artificial intelligence problems,

The Potential Solution is Concurrency

The light at the end of the tunnel is concurrency. " Integrated-circuit technology makes it
economically feasible to produce millions of computing devices to work on our problems in
parallel. Artificial intclligence mechanisms have been proposed that are suitable for such
" extreme parallel decomposition [Fahlman, Minsky, Shank, Rieger, Winston, Steels, Steele,
Doyle, Drescher, cte.). These systems represent information as networks of interconnected
‘ nodes. Many of their operations are dependent only on local information at the nodes.
Such operations conld, potentially, be perdformed e parallel on many nodes at onee,
making the speed ol the system independent of the size of the network,

A e i T
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’ “Infortunatcly, the word-at-a-time von Neumann architecture is not well suited for
vxploiting such concurrency. When performing relatively simple computations on large
amounts of data, a von Neumann computer does not utilize its hardware efficiently; the
number of interesting events per second per acre of silicon is very low. Most of the chip
arca is memory and only a few memory locations are accessed at a time. The performance
of the machine is limited by the bandwidth between memory and processor, This is what

3 Backus [1] calls the von Neumann Bottleneck. The bigger we build machines, the worse it

. gets.

: The bottleneck may be avoided by putting the processing where the data is, in the memory.
In this scheme the memory becomes the processor. Each object in memory has associated
o with it not only the hardware necessary to hold the state of the object, but also the 1
hardware necessary to process it. '

A Few Specific Operations Must be Fast

S Knowledge retrieval in Artificial Intelligence involves more than just looking up a fact in a
5 table. If the knowledge is stored as a semantic network, then finding the relevant
information may involve searching the entire network. Worse yet, the desired fact may not
be explicitly stored at all. It may have to be deduced from other stored information.

When retrieving knowledge, programs often spend most of their time repeating a few
simple operations. These are the operations that we want to be fast:

‘ o We need to deduce facts from semantic inheritance networks, like KLONE]2),
| NETL[6], OWL[21] or OMEGA[9].

0  We need to match patterns against sets of assertions, demons, or productions. If there
is no perfect match we may need the best match. ’

! 0 We need to sort a set according some parameter. For instance, a program may need to
- order goals in terms of importance.
|

0  We need to search graphs for sub-graphs with a spéciﬁed structure. For instance, we
2 may wish to find an analogy to a situation.

| Tools have already been developed for describing for these operations in terms of
concurrent processes.  In Codd's relational database algebra, [1] database gucries are
specified in terms of a few simple, potentially-concnrrent primitives, Another example,
more direethy connected o artificial ntelligenee, s Fablman's (6] work on nueker
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3 propagation. Fahlman has shovn that many simple deductions, such as property
inheritance can be expressed in teras of parallel operations. Schwartz [17] has developed a
. ] language based on set operations. Woods has developed a more powerful extension of

marker propagation. By providing a few powerful primitives that can be evaluated
concurrently, each of these descriptive systems allows a programmer to express concurrent
algorithms naturally. The conncction memory is designed to exploit the parallelism
inherent in these operations.

Marker Propagation was a Good First Step

A

"‘ In 1968, Quillian [25] proposed that information stored in a semantic network could be

manipulated by concurrently propagating markers through the network. Such a system
i would be able to retrieve information in a time that was essentially independent of the size

of the network. This basic idea was extended considerably in the latc 1970's by Fahiman
[6] and by Woods, [24] who worked out ways of controlling the marker propagation to
perform deduction and retrieval operations on inheritance networks. Fahlman also
proposed hardware for actually impicmenting his system concurrently.

Unfortunately, many of the marker propagation strategies are just heuristic. In

complicated cases they give the wrong answers. [6,12] Systems with well-dcfined seinantics, :
like OWL. [21] and OMEGA [8], have never been successfully expressed in terms of ]
markers. | believe that marker propagation systems, while on the right track, are not

sufficiently powerful to implement these systems.

| The Connection Memory

\ ‘The connection memory architecture captures many of the positive gualitics of marker

! propagation, without some of its weaknesses. It is a way of connecting together millions of

tiny processing cells so that they can work on a problem together. Each cell can

| communicate with a few others through a communications network. The communication

| connections are configured to mimic the structure of the specific problem being solved. FFor

a particular scmantic network, the cells are connected in the sume way as the data in the

; nctwork, Thus, each chunk of data has its own processor, connected to processors of related
i data.

If the connecctions were physical wires, the machine would have to rewired for cvery

i problem. Since this is impractical, the processing cells are connected through a switching
‘ network, They communicate by sending messages.  Receiving a message causes a cell to
change its state, and perhaps o transmit a few more messages. As in Hewitt's actor sysiems,
all computation 1akes place through the exchange of messages.
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Below 1 describe how this all works: the communication network, the algorithms for
computation and the formation of connections, and the operation of the cells. The most
important features of the connection memory are:

o ltis fast. Most of the chip area is usefully active during a computation. The system
may execute several million operations at a time.

o It is wireable. The communication network is locally connected. All wires are short
and pack efficiently into two dimensions. The ratio of wires to active elements can be
independent of the size of the system.

o It is useful. The connection memery seems to be able to implement all of the
operations of the relational algebra, as well as structured inheritance networks such as
KLONE [2], OMEGA (8], and OWL [21].

Structures it the Machine at Different Levels of Abstraction

CELL LEVEL TREE LEVEL NODE LEVEL

Figure 1.
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All Communication Is Local

At the lowest level, the connection machine is a uniform array of cells, each connected by
physical wires to a few of its nearest ncighbors. Each cell contains a few words of memory,
a very simple processor, and a communicator figure2. The communicators form a
packet-switched communications network. Cells interact through the network by sending
4 messages.  Each cell knows the addresses of a few other cells. When two cells know each
other's addresses, they can communicate. This establishes a virtual connection between the
cells. Connected cells behave as if they were linked by a physical wire, although messages
actually pass through the network.

Each cell contains a simple processor.

rﬁ( > alu

Y J q
\ regisiers )

1 \‘:igg ‘ message

, Figure 2.

Since the physical wires are all short, message must reach their destinations in increnental

steps, through intermediate communicators. A cefl addresses a message by specifying the 4
! relative displacement of the recipient (example: up two and over five). This does not
specify the route the message is to take, just its destination. When a communicator receives
: a message it decides on the basis of the address and local information which way the the
( message should go next. It modifics the address and sends it to the selected neighbor. For
3 cxample, a communicator receiving a message addressed "up two and over five” can
: change it to "up one and over fise”™ and send the message 1o the communicator above,
| When the addiess is all zetos, the message is at its destination and can be delivered. A




single message step is illustrated in ‘igure 3.

A Single Step of a Message toward its Destination.

Figure 3.

Cells are Simple

Most of the hardware in a cell is memory. Each cell has a few registers, a state vector, and a
rule table. The rule table is identical for all cells, so a single table can be sharcd among
multiple cells on a chip. The registers and state vector are duplicated for each cell. Registers
hold relative addresses of other cells. A ccll normally has three virtual connections, so
three registers are needed. There are also two or three extra registers for temporary storage
of addresscs and numbers. The state vector is a vector of bits. It stores markers, arithmetic
condition flags and the type of the cell. A cell may have 10 to 50 bits of state vector.
Addresses in a million word machine are 20 bits long, so there will be a total of about 150
bits per cell, not including the shared rule table, ‘

The rule tabie tells the cell how to behave when it receives a message. Each message
contains an address or number and a type field. The way a cell responds to a message
depends on the state of the cell and the type of the message. When a message is reccived,
the state and the message type are combined and used as an index into the rule table. The
appropriate response is determined from the table entry. It may involve changing the cell’s
state vecton, originating pew messages, of performing an arithmetic opetation, or some
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combination of these operations. The cell’s state vector usually changes as a result of ,
receiving a message.

If a cell is to transmit a message, the rule table must indicate the type of the message, the
pointer of the message, and the address of the recipient. The pointer and the address
normally come from the registers, although they may also be loaded with numerical
constants, such as the cell’s own address. Since the addressing scheme is relative, the cell’s
own address is always zero. The addresses of immediate neighbors arc also simple
constants, '

, Arithmetic operations take place on the contents of the pointer registers, and the result can
4 be stored back into a register. The state vector has condition-code bits which are set
according to the result. For instance, there are bits indicating a zero result, a negative
result, and a carry overflow. Since these bits arc treated as part of the state vector, they can
influence the future behavior of the cell. This is useful for numerical sorting operations.

Storage is Allocated Locally

Data in the connection memory is stored as the pattern of connections between cells. This
is similar to Lisp, where da‘a is stored as structures of pointers. The connections represent
the contents of the memory.

Unconnected cells can establish a connection by a mechanism called message waves.
Assume cell JOHN wants to get a pointer to cell MARY, but has no ideca where cell MARY is.
i JOHN can get such a pointer by broadcasting a message wave through the nectwork, |
g searching for MARY. Fach message in the wave contains the address of the cell that i}
originated the wave. The wave is propagated by the individual cells, each ccll forwarding
the wave to its neighbors, incrementing or decrementing the backpointer appropriately. ,
The is illustrated in figure 4. When the wave reaches cell MARY, MARY sends her address back |
;' _ to JOHN, using JOHN's address as specified in the wave., JOHN then sends out a second wave *
! to cancel the still spreading request. The cancel wave travels at twice the speed of the

1 request wave, so it overtakes the request and prevents it from propagating further.

A similar technique may be used to connect to a cell of a particular type , rather than to
specific cell. This happens most often when building new structures from unused cells. In ;
this case handshaking is nccessary to msure that only a single cell is found, ceven though 5
| several satistactory cells may have replicd to the request before it was canceled. A unused
' cell which sees arequest wave transmits an AVATEABEE message back 1o the originator.
Phe oniginator replies to the first such message with an ACCEPT, and to - all subsequent
messages with REJECT messages.
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Figure 4.

It is possible to calculate just how far the request message travels before the cancel wave
catches up. The space-time diagram in figure 5 shows how far each message must travel, If
the request wave propagates at half the rate of the other messages, it will travel twice the
necessary distance before it is canceled. This means that when connecting to an unused
node, if we assume that the free nodes are uniformly distributed, it will be necessary to
refuse about three AVAILABLE messages per connection.

This method of allocating storage may allow the machine to continue to operate with
defective cells. Cells are connected on the basis of availability, not address, so bad cells
need never be built into the network. Assume cach cell has some way of knowing which of
its ncighbors are functioning properly. Since a cell only interacts with the system through
its neighbors, a malfunctioning cell can be cut off from the rest of the system. The
neighbors never route a message through the bad cell and ignore any messages it tries to
transmit. None of the conncction memory’s algorithms depend on a cell existing at specific
addresses. A system with a few faulty cells could continue to function, with a slight
degradation in performance.

(1 have not yet stadied this defect-tolerance scheme in detail, so there may be bugs. 1t will
become important if we ever need to build very Lope machines or very farpe (waler-sized)
chips.)
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Space-time Diagram of Storage Allccation.
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| Trees Represent Nodes

A node in a semantic network can be linked to an arbitrary number of other nodcs. A cell,
on the other hand, can only connect to a few other cells. Since the network is to be
represented as a structure of connected cells, there must be some way of representing nodes
u with an arbitrary number of connections. This is accomplished by representing cach node
; i as a balanced binary tree of cells.

] In this scheme, each c'al. only needs three connections. One connection links the cell to
‘ ‘ those above it in the trﬁehand the other two connections link to the subtrees below. Each
node is a tree of cells. The depth of the tree is equal to the logarithm of the number of
, connections to the node. The total number of cells required to represent a node is equal to

‘ the number of connectiof® minus one.

The links in the network are also represented as connected cells. In this case, there is no ]
fanout problem. Each ik connecets to exactly three nodes: the two linked nodes, plus the
type af the Tk, Thus, adink can be repesented by a single cell, that conneets feaves of the
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appropriate node trees. The representation of a small net is shown in fizure 6.

Representing Nodes in terms of Cells.

cells

nodes

Figure 6.

Operations which add connections to the node tree must leave it balanced. To help with
this, each cell carries a bit indicating if new connections should be added to the left or right
side of the cell. This bit is set if the tree below the cell is left-heavy, clear if it is right-heavy,
and may be either if it is perfectly balanced. When adding a new connection, a message
starts at the top of the trce and move left or right as it goes down according to the balance
bit. As it passes though, it complements the bit, as shown in figure 7. This operation not
only sclects the correct terminal of the tree, but also leaves the balance bits in a consistent
state, ready for the next insertion. A similar algorithm must be used for deletion. (This
clegant algorithm was invented by Carl Feynman and independently by Browning at the
California Institute of Technology.)

The algorithm can be generalized to make a number of connections simultancously. To do
this, we send the number of connections to be made to the top cell of the tree. The ccll
divides this number by two and passes the result to the Ieft and right sub-cells. If the
number does not divide evenly the extra count is passed to the 1ean side of the tree. If cach
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“he Feynman/Browning Tree-Balancing Algorithm

Figure 7.

node repeats this process the numbers that rcach the terminal nodes will indicate how
many connections are to be made to those points. Again, the balance bit must be toggled as
the numbers pass through.

Objects Can Move to Shorten Distances

It is sometimes useful to make a distinction between the hardware of a cell and the
computational object that is stored in a cell. [ will call the object a cons, by analogy to Lisp.
A cell with no cons is free, and may be used to build new structures.

Connections arc all bidirectional, so each cons knows the address of all conses that know its
address. Knight has pointed out that a cons is free to move from cell to cell, as long as it
informs its acquaintances where it is moving. This would allow conses with frequent
communication to move nearer. Conses in (he configuration shown in figure 8 could swap
places. Conses that do not wish to swap could act as intermediaries, negotiating swaps
between conses on either side (fig 8 ¢). If conses kecp track of their utilization, an often
uscd cons may force a swap even if it is to a less-used cons's disudvantage. This would allow
implemcentation of a virtual network, analogous to virtual memories on conventional
computers, Little used conses would gradually be pushed away {rom the center of activity
and eventually fall off into a secondary storage device. As in virtual memory, there could
be several layers of successively slower and less expensive memories, say NMOS, magnetic
bubblcs, and disk.

et
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Conses Swapping to Shorten Path | engths

[a] [b] [c]
Figure 8.

I have not yet studied these migration schemes in detail. Whatever system we use, memory
management in a conncction machine should be easier than in conventional systems
because cach object is referenced only by a small, well-definced sct of acquaintances. [t can
be safely moved after informing those acquaintances.

The Connection Memory Operates on Sets

In this section I present a register-machine description of the connection memory. This is
only one possible interface between the connection memory and the outside world. It is
included here because it shows specifically how the connection machine can perform
certain retrieval operations.

This model does not capture the full power of the connection memory. The instructions
described below are implemented by loading the. rule tables of the cells, starting the
machine, and waiting for the calculation to complete. This mode of operation fails to take
full advantage of the memory's parallelism,

The connection memory is connected to a conventional computer in the same way as any
other memory. Its contents can be read and written with normal array-like read and write
operations, There are also other ways of accessing and modifving the contents. To take
advantage of these additional functions, the programmer must follow certain conventions
for the format of stored data. The machine treats the data as as set of nemed nodes,
connected by named finks, T artificial intelhpence programs the nodes of such a network

e i e it aes A
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usually represent concepts and the links represent relations between those concepts. The
connection memory, however, knows nothing about the semantics of networks, only their
structure,

The abstract machine has several registers. Unlike the registers of a serial machine, which
hold numbers or pointers, the connection memory registers hold sets or functions.

Set-registers contain sets of nodes in the network. These sets can be arbitrarily large. The
basic operations of the machine take place on every member of a set simultaneously, which
accounts for most of the machine’s concurrency. The letters A, 8, €, and so on, will refer to
set-registers. Each set-register is implemented using one bit in the state vector of every
node. A set-register contains contains exactly those nodes that have the corresponding bit
set.

There are also function-registers. These contain functions mapping nodes to nodes, nodes
or to numbers. The letters f, 6, H, and so on will be used to refer to function-registers. Each
function-register is implemented by storing an address in every node. The address
indicates where that node is mapped under the corresponding function. It is rclatively
expensive to store an address at each node, so there are only a smali number of
function-registers.

The instructions of the register machine fall roughly into four groups: set opcration,
propagation, function manipulation and structure modification, and arithmetic.
Instructions in the first two groups give the machine the power of a parallel marker
propagation machine such as Fahlman’s. The other instructions give the machine
additional capabilities involving function manipulation, pointer passing and arithmetic.
Each instruction group will be discussed separately below.

Group I: Set Operations

Since the sct-registers of the connection memory hold sets of objects, natural
register-to-register operations arc the standard sct operations. In the connection memory,

A « INTERSECT(B,C)

represents a single instruction, where "« indicates that the value on the right is deposited
into the register on the left. This particular instruction intersects the contents of two
set-registers and loads the result into a third. The other standard set operations (UNION,
DIFFERENCE, COMPLEMENT) are also single instructions. "Complement™ in this case means
complement with respect to the set of all of the nodes in the network.
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Registers may be initialized to the empty set with the CLEAR instruction.

These set instructions all operate simply by performing the appropriate Boolean operations
on the state vectors of all the nodes in the network. No messages need to be sent.

Group II: Propagation
Consider the following equivalent descriptions of links in a network:

o  Each link is a directed connection between two nodes, with a label specifying the type
of link. There are no redundant connections, i.¢. no two connections with the same
label start and end at the same nodes.

o  Each link type is a predicate on pairs of node, selecting pairs that bear the specified
relationship.

o0  Each link type is a relation which maps each node to a (possibly empty) set of nodes.
Specifically it maps a node into the nodes to which it is connected by a link of that
type.

o  Each link type is a function that maps sets of nodes into sets of nodes connected by
that type of link. The function is additive in the sense that if A=8 U C then F(A)=F(B) U
F(C). Thus, the function is defined by its behavior on the singleton sets.

These descriptions are all equivalent, in that they all describe the same mathematical
object: an arbitrary set of ordered pairs of nodes. Let us call such an object a relation, but
when we speak of applying a relation to a set, the last description is most useful in
understanding what is really happening. | will be careful to nor call this object a finction,
because that would confuse it with the things kept in function registers.

As an example, assume that the network contains nodes representing physical objects and
nodes representing colors. Each object node has a color-of link connecting to the node
that represents the object's color. Given such a network, we may find the color of an object
by applying the color-of relation to a sct containing the object. When we apply a relation
we arc treat it as a function from sets to sets, as in the last viewpoint above. For instance, if
register A contains the singleton set {appie) then,

B « APPIY RITATION(color -of (A)

s s S
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will load register B8 with {red}. OF course, the registers do not need to be loaded with
singleton sets. If A had contained {applie, banana, cherry} the same instruction would
have put {red, yellow} into 8. Here both apples and cherries are red, so both nodes
would map into the same color node.

The applied relation may map several sets into one. color-of, for example, will map both
{appie} and {cherry} into {red}. This means that the relations do not always have
inverses when viewed as functions. There is however always a reverse, which corresponds
to moving backwards along the link in the same way that the standard relation correspond
to moving forward along the link. For example, if A contains {red} then

B « APPLY-REVERSE-RELATION(color-of,A)

will load B with set of all red things. The inverse relation has the property that it will always
get back at least what you started with:

A c APPLY-REVERSE-RELATION(relation,APPLY-RELATION(relation,A))

Another useful associated relation is the transitive closure. This does not make much scnse
with respect to the color-of relation, so instead imagine a gencalogy network in which
nodes representing individual pcople are connected by parent-of links. In such a network,
if register A contained {John},

B « APPLY-RELATIOM-CLOSURE(parent-of, A ,U)

would load 8 with the set of all of the ancestors of John. The third argument u, specifics the
sct over which the relation is closed. In this case, u specifics the set of all nodes. If we are
interested only in John's matriarchal ancestry, this third argument would be the set of
females. ‘There is also an APPLY-REVERSE-RELATION-CLOSURE instruction, which would find
all of John's descendants. All of the instructions in this scction work by transmitting
messages from node to node containing selected bits-from the node's state vector. Thus, for
example, the APPLY-RELATION instruction works by having all nodes in the specified set
(that is, all nodes with a specific bit in their statc vector set) transmit messages to this effect
through color-of links. Nodes receiving such messages can then set the appropriate bit
indicating that they arc a member of the answer set.
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Example: Property Inheritance in a Virtual-Copy Hierarchy.

Assume that colors and types of objects are represented in a network. The are two types of
links in this network, color-of links and virtual-copy links. The virtual-copy links
represent class membership. This is a transitive property: crab-apples are a kind of apple,
apples are a kind of fruit, so crab-apples are fruit. The color-of links connect an object to
its color. If there is no explicitly stored color-of link then the color is inherited though the
virtual-copy hierarchy; crab-apples are red because crab-apple is a virtual copy of apple.

Here is a sequence of connection memory operations that finds all of the red things stored
in such a virtual copy network: '

APPLY-REVERSE-RELATION(color-of,{red}) ;A is all explicitly red things.
COMPLEMENT ({red})

APPLY-REVERSE-RELATION(color-of ,B} ;B is all explicitly non-red things.
COMPLEMENT(B) ;B is all red or possibly red things.
APPLY-REVERSE-RELATION-CLOSURE(virtual-copy,.A,B) ;C gets all red things.

[y -~ ==l -
Tttt

This code will properly inherit the color of all super-types. It will also allow inherited
properties to be explicitly overridden.

Group I1I: Instructions for Manipulating Functions

The instructions mentioned so far, allow the machine to do anything that can be done with
a content-addressable memory or a marker-propagation machine. Marker programs that
use n marks can always be translated into a connection-memory program using »
set-registers. Unfortunately, not all easy-to-partition algorithms can be expressed in terms
of set operations. For example, in the genealogy network above it is would be impossible
to find every man who is his own father. To compute this function the machine must
consider cach node independently. A marker-propagation machine would require a
separate marker for each individual. In relational database terms, a marker propagation or
a set machine can concurrently compute projections and restrictions, but not joins.

This motivates the introduction of the next group of instructions, which give the connection
memory additional power for handling these sorts of problems.  The source of this
additional power is the connection memory's ability to manipulate arbitrary functions.
Such functions, from nodes to nodes, are held in the function-registers. In the sample
instructions below, the letters £, 6 and H represent function registers.,

The easiest way to load a function register is from a relation stored in the network. Since
functions must be single vatued and a relation can be multiple valued, they cannot always
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4 e loaded directly. The connection memory handles the problem by selecting among the
snultiple values by an "indexing” operation. For example, if r is a single-valued relation,
then

F ¢« FUNCTION(r,1)

WP Ty
TP

will load function register F with the function that maps each node onto its r-related node,
] if there is one. If there is more than one, it will choose a single value according to the
1 index. This second argument indexes the choice among the multiple values by using it to
% determine a unique path through the various fan-out trees in the representation of the
5 network. The exact details of this algorithm are unimportant, except in that it guarantees
that the FUNCTION instruction executed twice with the same index will return the same
result. This allows a k-valued relation to be treated as a k-long vector of functions.

APPLY-FUNCTION-CLOSURE, which are analogous to the APPLY-RELATION and

‘.

“ One thing to do with a function is to apply it, so therc are APPLY-FUNCTION and
{
‘ APPLY-RELATION-CLOSURE instructions for applying relations.

a O A function may also be used to modify the structure of the network. This is the only
available mechanism for building structure concurrently. For any relation r, the
instruction

INSERT(F,r)

i ‘ will add to r all pairs in the contents of function-register F. Similarly DELETE will delete
| pairs from a relation.

Since functions can be viewed as sets of ordered pairs, they may also be combined using
INTERSECT-FUNCTIONS and DIFFERENCE- FUNCTIONS. UNION-FUNCTIONS may also be used if
the result is actually a function, as in the union of functions with disjoint domains.

The coMpoSE instruction can be used to compose a relation with a function. Since such a
composition is multiple valued in general, it too takes an index like the FUNCTION
instruction;

G « COMPOSE(r,F,n)

e — . .

| composes the relation v with the function £ and chooses a function fiom the result using
| the index n,

{
1
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The final way to create one funciion from another is to delete portions of it with the
RESTRICT instruction. This instruction restricts the domain of function to a set contained in
one of the set registers. For example,

F « RESTRICT(G,A)

will load f with the portion of the function in 6 that maps from the contents of A.

A function register may be initialized to the null function with the CLEAR-FUNCTION
instruction, or to the identity function with the IDENTITY-FUNCTION instruction.

The instructions in this section are the first ones that require nodes to send pointers in
messages. An instruction like CoMPOSE, for example, works by passing the contents of one
register in each node backwards through selected links. Other instructions, such as INSERT,
must actually allocate new cells and splice them into the existing network, by the
message-wave mechanism described earlier.

Instructions like UNTON-FUNCTIONS which do not send messages at all. Instead, they are
implemented by register-to-register operations within each node. These instructions are
similar to thosc in the first group (Set Operations).

Example: Relational Join
Given a genealogy network with parent-of and sex-of links, we wish to insert

grandfather-of links between appropriate nodes. We assume that cach person has only
one sex and two parents (one of each sex).

A ¢« APPLY-REVERSE-RELATION(sex-of ,{male}) ;A gets the set of all males.

F « IDENTITY-FUNCTION()

F « RESTRICT(F,A) :F is the identity function for males only.

Ff « COMPOSE(parent-of ,F,1) :F is now the father function.

G +« COMPOSE(parent-of,F,1) ;G is one of the grandfather functions.
INSERT(G,grandfather-of) ;build G into the network.

G ¢« COMPOSE(parent-of ,F.2) ;G is now the other grandfather function.
INSERT(G,grandfather-of) ;build your other grandfather into the network.

This example is a special case of the relational databuse equi-join operation. The code
takes advantage of the fact that grandfather-of is a two-valued relation. Join on an
n-valued relational would require repeating an operation n times. This is to be expected,
since in the worst case the equi-join operation produces the Cartesian product of its inputs.

e A . S TS T IR A PR, | s v
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Group IV: Arithmetic Instructions

The arithmetic instructions manipulate functions from nodes to numbers. Numbers are
just special nodes. The only thing that distinguishes them from ordinary nodes is that they
are recognized by the arithmetic instructions. Thus node-to-number functions can be held
in function-registers and manipulated by all of the function manipulation instructions
mentioned above. They can also be manipulated by the arithmetic instructions.

The first sct of arithmetic instructions are similar to the FUNCTION instruction. Like
FUNCTION, they load a specified function register from a relation. The function instruction
derives a single value from the potentially many-valued relation by choosing among them
according to its index argument. The arithmetic instructions derive a single value by
combining the values with an arithmetic operation. Thus,

F « SUM(r,I)

will load F wathr the tunction that maps each node into the sum of all its r-related nodes.
Another way - = s4ving this is that it associates with each node a number, which is the sum
of the nodes that can reached from it over r-links. The second argument to SuM indicates
how to gct a number from the node. In the example, 1 (for identity) indicated that the
node i*sclf is to be used as the value. This make sense, of course, only if these nodes are
numbers. Otherwise an error condition would be flagged.

MAXIMUM and MINIMUM are two other instructions that require the r-mapped nodes to be
numbers. These instructions have the same format as SuM, but instead of adding the
numbers, they reduce the set to a single value by choosing either the largest or the smallest
value.

AND and oR are classified as arithmetic instructions because they operate on and produce
numbers. ‘These instruction perform  bit-wise logical operations on the binary
representations of numbers. They have the same format as SuM, and produce a function in a
similar manner.

These five instructions (SUM, MINIMUM, MAXIMUM, AND, OR) are just examples of plausible
arithmetic instructions. Any function which turns a sct of objects into a single number
would make sense as an instruction.  Any symmetric and associative arithmetic operation
will do. There could be a MULTIPLY instruction, for instance. Asymmetric functions, like
subtract, do not make sense in this context because it would not be obvious what should be

subtracted from what,

s it
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This first class of arithmetic instructions opcrate by utilizing the fan out trees to actually

perform the required arithmetic. They are thus similar to the pointer passing functions of
the last section, except instead of selecting a single answer from those arriving at a fan out
tree based on an index, the answers are all combined in some manner.

There is a second class of arithmetic instruction for which asymmetric operations make
sense. These instructions combine two functions into a single functions, or to put it another
way, they associate with each node a value that depends on other valucs already associated
with the node. So, for example,

F « FUNCTION-SUBTRACT(G,H)

will load F with the function that maps each node to the difference of the values of the 6
and H functions applied to that node. Similar instructions are FUNCTION-SUM,
FUNCTION-MAXIMUM, FUNCTION-MINIMUM, FUNCTION-AND, and FUNCTION-OR.

This class of arithmetic instruction involves no message passing. These instructions are all
executed as register-to-register operations at each node.

How To Connect A Million Processors

The most difficult technical problem in constructing a connection memory is the
communications nctwork. The memory's speed is limited by the bandwidth of the network.
This bandwidth depends on the topology of the network, which is limited by physical
layout and wiring constraints. Highly connected structures, such as the Boolean n-cube, are
difficult or impossible to wire for such large numbers of nodes. Constraints on wiring
density suggest simple tessellated structurcs, such as the grid or the torus. These grid-like
structurcs are easy to wire, but the large average distance between nodes slows

communication.

Instead of choosing either of these extremes, | have developed a compromise that allows us
to take best advantage of the available wiring density. It is a family of connection patterns
that spans the gap between the low-performance grid, and the unwireable n-cube. Given a
set of enginecring numbers, such as the number of pins on available connectors or the
maximum wire density, we can choose from the faraily the highest performance connection
pattern that satisfies the constraints. ’ ‘

A method for gencrating the family connection patterns is shown in figure 9. | illustrate
here only the one-dimensional case. 'The two or three-dimensional layout is generated by
repeating this pattern in cach dimension independently, ‘The tirst member of the family is
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| the torus. In two dimensions this is just a grid with opposite edges connected, as in the
ILLIAC IV, [19] This pattern can easily be projected into a line, as shown. The sccond
3 member of the family is generated from the torus by connecting each node to the node

farthest away as shown. The nodes may be rearranged for efficient wiring by first twisting
the torus and then folding it, so that each node is adjacent to the node half-way around the ;
torus from itself. This pattern may now be projected into a line as shown.

Generating the Folded Torus

> . f
. a b f
|
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\ ' | c I/ d
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L( Figure 9. W .
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This operation of connecting, twisting and folding results in a connection pattern with one
half the maximum distance and twice the density ofwires. The procedure may be repeated
as many times as necessary to achieve an optimal tradeoff between performance and
wircability. If the torus is twisted log(n) times, where n is the number of nodes, the
resulting structure will be an augmented Boolean n-cube. The number of parallel wires in
the connecting buses may also be varied, generating a two-paramcter family of
interconnection patterns.

!
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The resulting connection pattern has the following desirable properties:
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0 Uniformity. The network looks similar from the viewpoint of each: node.
- 0 Extensibility. More nodes can be added by plugging more cells on at the edges.

£
-

0 A maximum wire length. Short wires allow synchronous operation.

0 A maximum wiring density, chosen to match available technology.

S SR

A maximum number of pins per module, chosen to match available technology.

F ahiiiaat vy
o

For an integrated circuit or a printed-circuit board the pattern would be repeated in two
dimensions. It is also extendable to three dimensions if such a technology becomes

available.

)

According to our initial calculations, the maximum performance network built with
off-the-shelf 1981 components is a twice-folded torus with five-bit data paths.

What Can the Machine Do?

One goal of the proposed research is to formalize just what the connection memory can and
cannot do. There already exists one well-worked-out formalism for describing retrieval
operations: relational database theory. Codd's relational calculus allows queries to be
, described the form of a predicate calculus. The relational algebra provides a set of
b operations for computing these queries. [4]

We do not expect to convert artificial intelligence knowledge representations to relational
: databases, because they do not provide a natural way of expressing artificial intelligence
B knowledge manipulation. But relational database theory does address a well-specified set of
P problems that are similar to those that we must solve for semantic networks. 1 believe that
| o relational database formalisms will provide theoretical tools for describing the operations of

the connection memory.

The notion of relational completeness, for example, provides a measure of the expressive
power of a retrieval language. If a machine can concurrently process all of the operations
of the relational algebra, which is relationally complete, we know that it can compute any
query that is expressible in the relational calculus. This gives us confidence that our system

has no hidden weaknesses.

TR A
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“Z“omparison with Other Concurrent Architectures

A useful way to characterize the machine is to contrast it with other systems that are similar
in form or purpose. Here is a list of such near misses, several of which have been important
sources of ideas.

o Itis not a way of hooking together a collection of general-purpose computers as in
[19,7,11, 3,20,23,18,8). The connection memory shares many features with these
systems, such as extensibility, concurrency, and uniformity, but the individual
proccssing clements in the connection memory are smaller.  Since each
connection-memory cell contains only a few dozen bytes of memory there can many
more of them, allowing for a higher degree of concurrency. The penalty is that the
connection memory is less general-purpose; it must be used in conjunction with a
conventional machine.

o Itis not a marker-propagation machine, as proposed by Fahlman. [6] The connection
memory is able to execute marker-type algorithms, but its pointer manipulation
capabilitics give it additional power.

o It is not a simple associative memory. [15] The elements in content addressable
memorics are comparable in size to conncction memory cells, but the connection
memory’s processing operations ar¢ far more general, due to its ability to
communicate between cells.

o It is not a systolic array [14,13]. In the connection memory, cells may operate
asynchronously. Uniformity is not critical; some cells may be defective or missing.
The connection memory is also more flexible than a hard-wired systolic-array,
although for problemS that can be done on both it is likely to be slower. Systolic array
algorithms can all be executed cfficiently on the connection memory.

o It is not a database management machine like RAP [16] or CASSM. [S] They are
designed to process a more restricted class of queries on a much larger database,

o Itis not a cellular array machine [22,10] Like these machines, the connection memory
has a regular repetitive layout, but unlike them it also has a mechanism for arbitrary
communication.

The machine is designed for symbol manipulation, not number crunching. 1t does have
limited parallel  arithmetic  capabilitics because  they are ofien useful in symbol
manipulation, for example, in computing a score for a best-nuach retrieval. Similar




architectures may have application 'n numeric processing, but we do not at this time plan to
investigate these possibilities.

What We Have Done so far

0  We have specified an algebra for expressing network pattern matching operations,
and we have shown that all expressions of the algebra can be efficiently evaluated on
the connection machine. One result is that the machine can concurrently search a
graph for an acyclic subgraph matching a specified pattern. This may be a first step
toward a theory of the connection machine’s operations.

0o  We have written several simulation programs of various portions of the machine.
These simulations have allowed us to discover and correct weakncsses in the
machine’s instruction set. We have run a few simple test programs on the simulators,
although we have not yet written a complete simulation of the machine.

0  We have extensively simulated the communication network. We have used these
simulations to measure the performance of various routing algorithms. Specifically,
we have tested six different algorithms on a grid, plus one algorithm for a
twice-folded torus. All of these algorithms performed well as long as the number
messages in transit remained significantly less than the number 6f message buffers.
Algorithms that used several buffers per cell performed best.

o  We have designed a message-routing chip for the machine. This was mostly an
excreise 1o give us some design experience, but we did work out circuit techniques
which should be useful in the construction of an actual machine. Specifically, the chip
included a crossbar and a novel incrementer/decrementer. We reccived chips,
through MOSIS, in January. The chips function correctly, in spite of a design-rule
error. We also learned things by measuring the timing of the actual chips that should
allow us to make a faster chip the next time around. ,

We Plan to Build a Prototype

In 1967 the MIT Artificial Intelligence Laboratory commissioned the construction of the
world’s first 256K -word core memory. The cost was approximately half a million dollars, or
about two dollars a word. The "old moby™ is actually still in use, although it 1s now flanked
by 256K words ol semiconductor memory that cost iterally one hundredth as much.

The proposed 128K connection memory will cost about as much per processor as the core
cost per word. Pt of this represents a one-time tooling cost, but by far the Tar qest evpense
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is the fabrication of the chips. These fabrication estimates assume the low yields and short
runs appropriate for a first-time project. If the architecture proves successful and is
duplicated on a larger scale, the per-cell costs would drop dramatically. Fundamentally, a
connection memory should only cost a constant factor more than a similar-sized
semiconductor random access memory. If, say, half of the area of a connection memory
chip is pointer memory, then storing a given amount of data would take twice as many
connection memory chips as RAM chips. The RAM, of course, would only store the data,
not process it.

We plan to design in detail a million-element connection memory, and then actually build
and program one 128K slice of it. This is enough to to let us test the concept without
necdlessly replicating the inevitable mistakes of a first-time design. Because the connection
memory is incrementally extendable, like ordinary memory, it would be possible to build a
million element machine by simply plugging together eight duplicated sections, although
we will probably never actually do this with this first machine. We will try, however, to
actually solve the problems that would be cncountered in constructing a larger version,
Since packaging problems are significantly different for a larger machine, we will actually
build the mechanical package for a million element machine. Address sizes,
communication protocols and clock speeds will all be designed for a million cells.

According to our current plans, the million-clement machine will fit into a single rack. The
rack will contain eight card cages, four on the front and four on the back. Each cage will
contain sixteen cards, each twenty-one inches wide by fourteen inches deep. One-hundred
twenty-eight chips will be mounted on cach card, in socketed sixty-cight-pin square
ceramic packages. Each chip will contain sixty-four cells. The cells on a chip will share a
single off-chip communicator, arithmetic unit and rule table,
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